Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.119
Filtrar
1.
Carbohydr Res ; 538: 109099, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574411

RESUMO

Ganoderma lucidum, widely used in traditional medicine, has several biological properties. Polysaccharides, mainly glucans, are known as one of its main bioactive compounds. Consequently, the achievement and chemical investigation of such molecules are of pharmaceutical interest. Herein, we obtained water-insoluble and water-soluble polysaccharides from G. lucidum by alkaline extraction. Fractionation process yielded three fractions (GLC-1, GLC-2, and GLC-3). All samples showed to be composed mainly of glucans. GLC-1 is a linear (1 â†’ 3)-linked ß-glucan; GLC-2 is a mixture of three different linear polysaccharides: (1 â†’ 3)-ß-glucan, (1 â†’ 3)-α-glucan, and (1 â†’ 4)-α-mannan; while GLC-3 is a branched ß-glucan with a (1 â†’ 4)-linked main chain, which is branched at O-3 or O-6 by (1 â†’ 3)- or (1 â†’ 6)-linked side chains. This research reports the variability of glucans in Ganoderma lucidum fruiting bodies and applicable methodologies to obtain such molecules. These polysaccharides can be further applied in biological studies aiming to investigate how their chemical differences may affect their biological properties.


Assuntos
Ascomicetos , Reishi , beta-Glucanas , Glucanos/química , Reishi/química , Polissacarídeos/química , beta-Glucanas/química , Carpóforos/química , Água/análise
2.
Nat Commun ; 15(1): 3429, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653764

RESUMO

Carbohydrate-binding modules (CBMs) are non-catalytic proteins found appended to carbohydrate-active enzymes. Soil and marine bacteria secrete such enzymes to scavenge nutrition, and they often use CBMs to improve reaction rates and retention of released sugars. Here we present a structural and functional analysis of the recently established CBM family 92. All proteins analysed bind preferentially to ß-1,6-glucans. This contrasts with the diversity of predicted substrates among the enzymes attached to CBM92 domains. We present crystal structures for two proteins, and confirm by mutagenesis that tryptophan residues permit ligand binding at three distinct functional binding sites on each protein. Multivalent CBM families are uncommon, so the establishment and structural characterisation of CBM92 enriches the classification database and will facilitate functional prediction in future projects. We propose that CBM92 proteins may cross-link polysaccharides in nature, and might have use in novel strategies for enzyme immobilisation.


Assuntos
Proteínas de Bactérias , beta-Glucanas , beta-Glucanas/metabolismo , beta-Glucanas/química , Cristalografia por Raios X , Sítios de Ligação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ligação Proteica , Modelos Moleculares
3.
Carbohydr Polym ; 332: 121921, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431398

RESUMO

Curdlan is a unique (1,3)-ß-D-glucan with bioactivity and exceptional gelling properties. By chemical functionalization such as carboxymethylation, the physicochemical properties of curdlan can be significantly tailored. However, how the carboxymethylation extent of curdlan affects its rheology and gelation characteristics has yet to be fully understood. Herein, we investigated the impact of the degree of substitution (DS, ranging from 0.04 to 0.97) on the rheological and gelation behavior of carboxymethylated curdlan (CMCD). It was found that CMCD with DS below 0.20, resembling native curdlan, still retained its gelling capability. As the DS increased beyond 0.36, there was a significant increase in its water solubility instead of gelation, resulting in transparent solutions with steady/complex viscosities adhering to the Cox-Merz rule. Moreover, CMCD with high DS demonstrated the ability to undergo in-situ gelation in the presence of metal ions, attributed to the nonspecific electrostatic binding. Additionally, in vitro cytocompatibility testing showed positive compatibility across varying DS in CMCD. This research offers a holistic understanding of the viscosifying and gelling behaviors of CMCD with varying DS, thereby fostering their practical application as thickeners and gelling agents in fields ranging from food and biomedicine to cosmetics and beyond.


Assuntos
beta-Glucanas , beta-Glucanas/química , Glucanos/química , Géis/química , Água , Reologia
4.
Carbohydr Polym ; 332: 121904, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431411

RESUMO

Glucan is a natural polysaccharide widely distributed in cereals and microorganisms that has various biological activities, including immunomodulatory, anti-infective, anti-inflammatory, and antitumor activities. In addition to wide applications in the broad fields of food, healthcare, and biomedicines, glucans hold promising potential as drug delivery carrier materials or ligands. Specifically, glucan microparticles or yeast cell wall particles are naturally enclosed vehicles with an interior cavity that can be exploited to carry and deliver drug payloads. The biological activities and targeting capacities of glucans depend largely on the recognition of glucan moieties by receptors such as dectin-1 and complement receptor 3, which are widely expressed on the cell membranes of mononuclear phagocytes, dendritic cells, neutrophils, and some lymphocytes. This review summarizes the chemical structures, sources, fundamental properties, extraction methods, and applications of these materials, with an emphasis on drug delivery. Glucans are utilized mainly as vaccine adjuvants, targeting ligands and as carrier materials for various drug entities. It is believed that glucans and glucan microparticles may be useful for the delivery of both small-molecule and macromolecular drugs, especially for potential treatment of immune-related diseases.


Assuntos
Glucanos , beta-Glucanas , Glucanos/metabolismo , beta-Glucanas/química , Saccharomyces cerevisiae/metabolismo , Neutrófilos , Proteínas de Transporte , Lectinas Tipo C/metabolismo
5.
Int J Pharm ; 655: 123996, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38490404

RESUMO

The immunomodulatory properties of ß-glucans have sparked interest among various medical fields. As vaccine adjuvants, glucan particles offer additional advantages as antigen delivery systems. This study reported the immunomodulatory properties of glucan particles with different size and chemical composition. The effect of glucan microparticles (GPs) and glucan nanoparticles (Glu 130 and 355 NPs) was evaluated on human immune cells. While GPs and Glu 355 NPs demonstrated substantial interaction with Dectin-1 receptor on monocytes, Glu 130 NPs exhibited reduced activation of this receptor. This observation was substantiated by blocking Dectin-1, resulting in inhibition of reactive oxygen species production induced by GPs and Glu 355 NPs. Notably, monocyte-derived dendritic cells (moDCs) stimulated by Glu 355 NPs exhibited phenotypic and functional maturation, essential for antigen cross-presentation. The immunomodulatory efficacy was investigated using an autologous mixed lymphocyte reaction (AMLR), resulting in considerable rates of lymphocyte proliferation and an intriguing profile of cytokine and chemokine release. Our findings highlight the importance of meticulously characterizing the size and chemical composition of ß-glucan particles to draw accurate conclusions regarding their immunomodulatory activity. This in vitro model mimics the human cellular immune response, and the results obtained endorse the use of ß-glucan-based delivery systems as future vaccine adjuvants.


Assuntos
Glucanos , beta-Glucanas , Humanos , Glucanos/farmacologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Adjuvantes de Vacinas , beta-Glucanas/farmacologia , beta-Glucanas/química , Antígenos
6.
Int J Biol Macromol ; 264(Pt 1): 130561, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431011

RESUMO

Beta-glucans possess the ability of retarding starch retrogradation. However, ß-glucans from different sources might show various influences on retrogradation process and the structure-function relationships of ß-glucans related to the feature still remains unclear. In the study, the ß-glucans from oat (OG), highland barley (HBG), and yeast (YG) were selected. Each ß-glucans formed aggregate as observed by atomic force microscopy. OG and HBG with a lower Mw aggregated more obviously and exhibited higher intrinsic and apparent viscosity. The two ß-glucans showed more restraining effect on the short-term starch retrogradation in the sol-like test system (RVA) and the long-term starch retrogradation in the gel-like test system (DSC). However, YG with a higher Mw exerted a greater retarding effect on the short-term starch retrogradation in gel-like test systems (Mixolab and rheology). LF-NMR indicated that OG and HBG increased the population of less-bound water by wrapping around the starch. In summary, the structural characteristics of ß-glucan (Mw and aggregation state) and experiment condition (solid content) jointly influenced starch retrogradation, because a lower Mw and higher aggregation capacity ß-glucan interacted more readily with starch and inhibited more starch re-association due to the higher diffusion rate in the sol-like system.


Assuntos
Amido , beta-Glucanas , Amido/química , beta-Glucanas/química , Farinha , Triticum/química , Viscosidade
7.
Int J Biol Macromol ; 264(Pt 1): 130546, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442833

RESUMO

ß-1,3-Glucans possess therapeutic potential owing to their ability to exhibit immunostimulating activity. ß-1,3-Glucans, isolated from various organisms, differ in their chemical structures, molecular weight, and branching degree, potentially forming particulate, helix, or random coil conformations in water. Therefore, this study used synthesized ß-1,3-glucan mimic polymers to investigate the difference in binding affinity for dectin-1 and induced cytokine productions based on polymer structures. The ß-1,3-glucan mimic polymers were synthesized using ß-1,3-glucan tetrasaccharyl monomer, with subsequent modifications to the polymer backbones through the introduction of hydrogen or a hydroxy group. Polymers with different structures in both ligands and polymer backbones were utilized to comprehensively investigate their binding affinity to dectin-1 and cytokine-inducing in macrophages. Hydroxylated polymers exhibited a high binding affinity for dectin-1, similar to that of schizophyllan, whereas the polymer composed of only saccharyl monomers did not bind to dectin-1. Further, when administered to macrophage RAW264 cells, polymers with branched and hydrophobic polymer backbones exhibited strong cytokine-inducing activities. Moreover, the results revealed that the essential factors for cytokine induction include the branches of ß-1,3-glucans, high (tens of thousands) molecular weights, and hydrophobicity. The results suggests that artificial polymers comprising these factors exhibit immunostimulating activity and could be developed as therapeutic agents.


Assuntos
Glucanos , beta-Glucanas , Glucanos/química , Polímeros , beta-Glucanas/química , Citocinas/metabolismo , Lectinas Tipo C
8.
Nutrients ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542811

RESUMO

This paper explores the multifaceted nature of ß-glucan, a notable dietary fiber (DF) with extensive applications. Beginning with an in-depth examination of its intricate polysaccharide structure, the discussion extends to diverse sources like oats, barley, mushrooms, and yeast, emphasizing their unique compositions. The absorption and metabolism of ß-glucan in the human body are scrutinized, emphasizing its potential health benefits. Extraction and purification processes for high-quality ß-glucan in food, pharmaceuticals, and cosmetics are outlined. The paper underscores ß-glucan's biofunctional roles in immune modulation, cholesterol regulation, and gastrointestinal health, supported by clinical studies. The review discusses global trade dynamics by tracing its evolution from a niche ingredient to a global commodity. In summary, it offers a comprehensive scientific perspective on ß-glucan, serving as a valuable resource for researchers, professionals, and industries exploring its potential in the dietary fiber landscape.


Assuntos
beta-Glucanas , Humanos , beta-Glucanas/química , Disponibilidade Biológica , Fibras na Dieta , Colesterol , Saccharomyces cerevisiae , Avena/química
9.
Food Funct ; 15(7): 3246-3258, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38446134

RESUMO

Barley (Hordeum vulgare L.) is rich in starch and non-starch polysaccharides (NSPs), especially ß-glucan and arabinoxylan. Genotypes and isolation methods may affect their structural characteristics, properties and biological activities. The structure-activity relationships of NSPs in barley have not been paid much attention. This review summarizes the extraction methods, structural characteristics and physicochemical properties of barley polysaccharides. Moreover, the roles of barley ß-glucan and arabinoxylan in the immune system, glucose metabolism, regulation of lipid metabolism and absorption of mineral elements are summarized. This review may help in the development of functional products in barley.


Assuntos
Hordeum , beta-Glucanas , Hordeum/química , Polissacarídeos/química , Amido/metabolismo , beta-Glucanas/química
10.
Food Chem ; 448: 139082, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537544

RESUMO

ß-galactosidase (lactase) is commercially important as a dietary supplement to alleviate the symptoms of lactose intolerance. This work investigated a unique activation of CMP (carboxymethylated (1 â†’ 3)-ß-d-glucan) on lactase and its mechanism by comparing it with carboxymethyl chitosan (CMCS), an inhibitor of lactase. The results illustrated that the secondary and tertiary structures of lactase were altered and its active sites exposed after complexation with CMP, and dissociation of lactase aggregates was also observed. These changes favored better accessibility of the substrate to the active sites of lactase, resulting in a maximum increase of 60.5 % in lactase activity. Furthermore, the hydrophobic and electrostatic interactions with lactase caused by the carboxymethyl group of CMP were shown to be crucial for its activation ability. Thus, the improvement of lactase activity and stability by CMP shown here is important for the development of new products in the food and pharmaceutical industries.


Assuntos
Quitosana/análogos & derivados , Interações Hidrofóbicas e Hidrofílicas , Eletricidade Estática , beta-Galactosidase , beta-Glucanas , beta-Galactosidase/química , beta-Galactosidase/metabolismo , beta-Glucanas/química , beta-Glucanas/farmacologia , Quitosana/química , Estabilidade Enzimática , Cinética , Ativação Enzimática/efeitos dos fármacos
11.
Food Funct ; 15(8): 4051-4064, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38535983

RESUMO

This study evaluated the nutritional profile and fiber content of innovative formulations of wheat-based biscuits enriched with chia seeds, carob flour and coconut sugar. The in vitro antioxidant, cytotoxic, anti-inflammatory and antimicrobial activities were also investigated to understand the potential health advantages of the incorporation of these new ingredients. The novel biscuits demonstrated significant improvements in protein and mineral content, with increases of 50% and 100% in chia biscuits, and up to 20% and 40% in carob biscuits, respectively. Fiber also notably increased, particularly in samples containing 10% carob flour, which increased four times as compared to wheat-based samples. The new ingredients exhibited antibacterial and antifungal activity, particularly against Yersinia enterocolitica (minimum inhibitory concentration 1.25 mg mL-1 in coconut sugar) and Aspergillus fumigatus (minimum inhibitory concentration/minimum fungicidal concentrations 2.5/5 mg mL-1 in chia seeds). However, the final biscuits only displayed antifungal properties. Carob flour and chia seeds had a remarkably high capacity to inhibit the formation of TBARS and promoted greater antioxidant activity in biscuit formulations, with EC50 values decreasing from 23.25 mg mL-1 (control) to 4.54 mg mL-1 (15% defatted ground chia seeds) and 1.19 mg mL-1 (10% carob flour). Only chia seeds exhibited cellular antioxidant, anti-inflammatory and cytotoxic activity, attributes that were lost when seeds were added into the biscuits. These findings highlight the potential health benefits of these ingredients, particularly when incorporated in new wheat-based formulations.


Assuntos
Antioxidantes , Fibras na Dieta , Farinha , Galactanos , Mananas , Valor Nutritivo , Triticum , Triticum/química , Fibras na Dieta/análise , Fibras na Dieta/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Farinha/análise , Sementes/química , Gomas Vegetais/química , Gomas Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Salvia/química , beta-Glucanas/farmacologia , beta-Glucanas/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Pão/análise , Antibacterianos/farmacologia , Antibacterianos/química , Goma Arábica/química , Goma Arábica/farmacologia , Animais , Testes de Sensibilidade Microbiana , Humanos
12.
Int J Biol Macromol ; 265(Pt 1): 130788, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508551

RESUMO

The study aimed to improve the quality and storage stability of novel plant-based soymilk with the incorporation of untreated (UtßG) and modified oat derived 1,4-ß-D-glucan (OzßG) at varying concentrations (0, 1, and 2 % labelled as S0, S1 and S2). The treated soymilk was characterized for physical, chemical, nutritional, rheological, particle size, zeta potential, sensory and storage stability characteristics. The results revealed that 1, 4-ß-D-glucan incorporation increased the acidity (0.67 to 0.73 %), viscosity (3.4 to 4.7 Cp) and ash content (0.74 to 0.92 %), however color remains natural. The frequency sweep and shear experiments showed that the 1,4-ß-D-glucan modified the rheological parameters of the soymilk. The sensory analysis (n = 30) indicated that texture, mouthfeel and overall acceptability (8.38). Compared to OzßG-treated soymilk, UtßG soymilk, especially S2, exhibited superior thickening and rheological properties. The storage study indicated minimal phase separation in 1,4-ß-D-glucan-incorporated samples, maintaining stability for 15 days under refrigerated conditions without compromising overall quality. Thus, this study provides valuable insights into the potential application of 1,4-ß-D-glucan for improving the technological quality of soymilk that highlights possible implications for its commercialization potential.


Assuntos
Glucanos , beta-Glucanas , Avena/química , Viscosidade , Tamanho da Partícula , beta-Glucanas/química
13.
Methods Mol Biol ; 2789: 101-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38506995

RESUMO

Beta-glucans with diverse chemical structures are produced by a variety of microorganisms and are commonly found in microbial cell walls. ß-(1,3)-D-glucans are present in yeast and fungi, and, for this reason, their traces are commonly used as a sign of yeast or fungal infection or contamination. Despite being less immunologically active than endotoxins, beta-glucans are pro-inflammatory and can activate cytokines and other immunological responses via their cognate pattern recognition receptors. Unlike endotoxins, there is no established threshold pyrogen dose for beta-glucans; as such, their quantity in pharmaceutical products is not regulated. Nevertheless, regulatory agencies recognize the potential contribution of beta-glucans to the immunogenicity of protein-containing drug products and recommend assessing beta-glucans to aid the interpretation of immunotoxicity studies and assess the risk of immunogenicity. The protocol for the detection and quantification of ß-(1,3)-D-glucans in nanoparticle formulations is based on a modified limulus amoebocyte lysate assay. The results of this test are used to inform immunotoxicity studies of nanotechnology-based drug products.


Assuntos
Nanopartículas , beta-Glucanas , beta-Glucanas/química , Saccharomyces cerevisiae , Glucanos , Endotoxinas , Nanopartículas/efeitos adversos , Nanopartículas/química
14.
Food Chem ; 441: 138385, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38218152

RESUMO

This study investigated the effects of ß-glucan (0-6%) on the physicochemical properties, structure, and in vitro digestibility of highland barley starch (HBS) under spray drying (SD). SD significantly enhanced the inhibitory effect of 6% ß-glucan on the in vitro digestibility and glucose diffusion of HBS. After SD, the addition of ß-glucan at 4% and 6% concentration significantly increased the pasting temperatures of starch while decreased the rheological properties. Thermal properties demonstrated that ß-glucan improved the thermal stability and residue content of HBS at 600°C, lowered its maximum loss rate, and maintained its thermal stability after SD. Structural properties showed that ß-glucan affected greatly on amorphous regions of HBS after SD. Additionally, ß-glucan dispersed more evenly in the starch system and experienced hydrogen bonding with starch after SD. This study presents a novel approach to enhancing the inhibitory effect of ß-glucan on starch digestion.


Assuntos
Hordeum , beta-Glucanas , Amido/química , Hordeum/química , beta-Glucanas/química , Secagem por Atomização , Temperatura
15.
Int J Biol Macromol ; 260(Pt 1): 129417, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224806

RESUMO

The impacts of protein types and its interaction with ß-glucan on the in vitro digestibility of highland barley starch were investigated through analyzing physicochemical and microstructural properties of highland barley flour (HBF) after sequentially removing water- (WP), salt- (SP), alcohol- (AP) and alkali-soluble (AlkP) proteins. Resistant starch (RS) increased significantly in HBF after removing WP and SP, and RS of HBF was lower than that of without ß-glucan. After removing WP, SP and AP, swelling powers of HBF without ß-glucan (9.33-9.77) were higher than those of HBF (12.09-15.95). Trends of peak viscosity and peak temperature (thermal degradation temperature) were similar as swelling power, and HBF without AP showed the highest peak temperature (310.33 °C). Removals of different proteins improved the crystalline structure and short-range order of starch. There was a blue shift in T2 values and an opposite change in free water proportion. The matrix on starch surface was mainly formed by AP and AlkP, which could be aggregated by ß-glucan. But, the inhibitory effect of AP or AlkP was stronger than that of proteins combined with ß-glucan. These results help in the development of starch-based foods with different digestive properties by combining different protein types with ß-glucan.


Assuntos
Hordeum , beta-Glucanas , Amido/química , Hordeum/química , beta-Glucanas/química , Farinha , Amido Resistente , Água/química
16.
Carbohydr Polym ; 329: 121782, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286552

RESUMO

Glucans are the most abundant class of macromolecule polymers in fungi, which are commonly found in Ascomycota and Basidiomycota. Fungal glucans are not only essential for cell integrity and function but also crucial for the immense industrial interest in high value applications. They present a variety of structural characteristics at the nanoscale due to the high regulation of genes and the involvement of stochastic processes in synthesis. However, although recent findings have demonstrated the genes of glucans synthesis are relatively conserved across diverse fungi, the formation and organization of diverse glucan structures is still unclear in fungi. Here, we summarize the structural features of fungal glucans and the recent developments in the mechanisms of glucans biosynthesis. Furthermore, we propose the engineering strategies of targeted glucan synthesis and point out the remaining challenges in the synthetic process. Understanding the synthesis process of diverse glucans is necessary for tailoring high value glucan towards specific applications. This engineering strategy contributes to enable the sustainable and efficient production of glucan diversity.


Assuntos
Basidiomycota , beta-Glucanas , Glucanos , beta-Glucanas/química , Parede Celular/química
17.
Carbohydr Polym ; 327: 121694, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171651

RESUMO

Salecan, a natural ß-glucan compromising nine residues connected by ß-(1 â†’ 3)/α-(1 â†’ 3) glycosidic bonds, is one of the newly approved food ingredients. Salecan has multiple health-improving effects, yet its mechanism against Type 2 diabetes mellitus (T2DM) remains poorly understood. In this study, the hypoglycemic effect and underlying mechanism of Salecan intervention on STZ-induced diabetic model mice were investigated. After 8 weeks of gavage, Salecan attenuated insulin resistance and repaired pancreatic ß cells in a dose-dependent manner. In addition, Salecan supplement remodel the structure of the gut microbiota and altered the level of intestinal metabolites. Serum metabolites, especially unsaturated fatty acids, were also affected significantly. In addition, tight junction proteins in the colon and autophagy-related proteins in the pancreas were upregulated. Multiomics analysis indicated that Lactobacillus johnsonii, Muribaculaceae, and Lachnoclostridium were highly associated with fatty acid esters of hydroxy fatty acids (FAHFA) levels in the colon, accordingly enhancing arachidonic acid and linoleic acid in serum, and promoting GLP-1 release in the intestine and insulin secretion in the pancreas, thus relieving insulin resistance and exhibiting hypoglycemic effects. These findings provide a novel understanding of the anti-diabetic effect of Salecan in mice from a molecular perspective, paving the way for the wide use of Salecan.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , beta-Glucanas , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Multiômica , beta-Glucanas/química
18.
Carbohydr Polym ; 328: 121747, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220355

RESUMO

Wheat bran is a low-cost by-product with significant nutritional value, but it is primarily utilized in animal feed applications. This study sought to investigate chemical methodologies for modifying the wheat bran's structure, enhancing non-starch polysaccharides solubility in water, and assessing alterations in functional and biological attributes. Chemical modifications were conducted under aqueous, alkaline, acid, and oxidizing conditions. Parameters such as yield, monosaccharides, arabinoxylans, ß-glucan and phenolic content, molecular weight, functional properties, and prebiotic in vitro capacity were examined. The samples exhibited higher yields than the control, particularly in alkaline and acidic extractions. Notably, all soluble polysaccharide fractions (SPF) displayed a reduced molecular weight (<25KDa). ß-glucan contents were raised in alkaline and acid extractions compared to the control, despite only in alkaline extraction were observed increase in arabinoxylans, confirmed by enzymatic-driven linkage analyses. Phenolic compounds and their antioxidant activities were low across all SPF. The samples showed heightened solubility, minimal foaming, and reduced water absorption properties. An alkaline extraction demonstrated a potential high prebiotic effect. Most samples showed positive relative growth and prebiotic activity for Lactobacillus and Bifidobacterium. This study suggests that an alkaline extraction of wheat by-product could enhance its value by increasing ß-glucan content, arabinoxylans release, and prebiotic potential.


Assuntos
Fibras na Dieta , beta-Glucanas , Animais , Fibras na Dieta/análise , Polissacarídeos/química , Antioxidantes/farmacologia , Antioxidantes/análise , beta-Glucanas/farmacologia , beta-Glucanas/química , Água
19.
Int J Biol Macromol ; 260(Pt 1): 129271, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199557

RESUMO

The cell walls of wheat endosperm, which play a pivotal role in seed germination, exhibit a laminated structure primarily composed of polysaccharides. In this study, composite multilayer films were prepared using arabinoxylan (AX), (1,3;1,4)-ß-D-glucan (MLG), and cellulose nanofibers (CNFs), and the effect of polymer blend structure on cell wall hydration and mechanical properties was investigated. Atomic force microscopy and X-ray diffraction indicated that the network structure of MLG/CNF exhibits a higher degree of continuity and uniformity compared to that of AX/CNF. Mechanically, the extensive linkages between MLG and CNFs chains enhance the mechanical properties of the films. Moreover, water diffusion experiments and TD-NMR analysis revealed that water molecules diffuse faster in the network structure formed by AX. We propose a structural model of the endosperm cell wall, in which the CNFs polymer blend coated with MLG serves as the framework, and the AX network fills the gaps between them, providing diffusion channels for water molecules.


Assuntos
Celulose , Xilanos , beta-Glucanas , Celulose/química , beta-Glucanas/química , Endosperma , Triticum/química , Parede Celular/química , Água/química
20.
Carbohydr Res ; 536: 109041, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262208

RESUMO

ß-Glucan is a homopolymer with a backbone of ß-1,3-linked glucose residues. The solubility and biological activity of ß-glucan can be influenced by the length of the backbone and the length/interval of the ß-1,6 branches. Dectin-1 is crucial in innate immunity through its binding to exogenous ß-glucans. However, there are few quantitative binding affinities available and there is no comprehensive comparative analysis of the binding of Dectin-1 to insoluble ß-glucans. Here, we have developed a simple binding assay for the interaction between Dectin-1 lectin domain (Dectin-1 CTLD) and insoluble ß-glucans. We utilized the paramylon particle as a model of insoluble ß-glucans. Dectin-1 CTLD bound to paramylon (particle size 3.1 µm) was separated from unbound Dectin-1 CTLD by centrifugation using a membrane filter (pore size 0.2 µm). The protein in the filtrate was quantified by SDS-PAGE and densitometry. The amount decreased in proportion to the amount of paramylon in the mixture. A control experiment using the Dectin-1 CTLD inactive mutant W221A showed that the mutant passes through the filter without binding paramylon. These results are evidence of site-specific binding of Dectin-1 CTLD to paramylon and demonstrate that the separation of paramylon-bound/unbound Dectin-1 CTLD is achievable through centrifugation using a filter. The assay was extended to other insoluble ß-glucans including curdlan. Additionally, it can be utilized in competitive inhibition experiments with soluble short-chain ß-glucans such as laminarin. The assay system allows for quantitative comparison of the affinities between insoluble and soluble ß-glucans and Dectin-1 CTLD, and should be useful because of its low-tech convenience.


Assuntos
beta-Glucanas , beta-Glucanas/química , Lectinas Tipo C/genética , Lectinas Tipo C/química , Imunidade Inata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...